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We present tests of comparison between our versions of the Fast Multipole Algo-
rithm (FMA) and the tree-code to evaluate gravitational forces in particle systems.
We have optimized Greengard’s original version of FMA allowing for a more effi-
cient criterion ofwell-separationbetween boxes, to improve theadaptivityof the
method (which is very important in highly inhomogeneous situations) and to per-
mit thesmoothingof gravitational interactions. The results of our tests indicate that
the tree-code is 2–4 times faster than the FMA for clumped distributions and 3–9
times for homogeneous distributions, at least in the interval ofN here investigated
(N ≤ 2 · 105) and at the same level of accuracy (error∼10−3). This order of accuracy
is generally considered as the best compromise between CPU-time consumption and
precision for astrophysical simulations. Moreover, the claimed linear dependence
on N of the CPU-time of the FMA is not confirmed and we give a “theoretical”
explanation for that. c© 1998 Academic Press

1. INTRODUCTION

The availability of fast computers is allowing rapid development of simulations of large
N-body systems in Astrophysics, as well as in other fields of physics where the behaviour
of large systems of particles is investigated.

The heaviest computational part of a dynamical simulation of such systems (composed
by point masses and/or smoothed particles representing a gas) is the evaluation of the
long-rangeforce, such as the gravitational one, acting on every particle and due to all the
other particles of the system. Astrophysically realistic simulations require very largeN
(greater than 105), making the direct∼N2 pair gravitational interaction evaluations too
slow to perform. To overcome this problem various approximate techniques to compute
gravitational interactions have been proposed.
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Among them, the tree-code algorithm proposed by Barnes and Hut (hereafter BH, see
[1]) is now widely used in Astrophysics because it does not require any spatial fixed grid
(like, for example, methods based on the solution of Poisson’s equation). This allows it
to follow very inhomogeneous and variable in time situations, typical of self-gravitating
systems out of equilibrium. In fact its intrinsic capability to give a rapid evaluation of forces
allows the dedication of more CPU-time to follow fast dynamical evolution, in contrast
to other higher accuracy methods that are more suitable for other physical situations, e.g.,
molecular dynamics for polar fluids, where the Coulomb term is present.

While for the tree-code the CPU-time requirement scales asN log8 N, in the recently
proposed Fast Multipole Algorithm (hereafter the FMA, see [9]) this time is claimed to scale
asN, at least in quasi-homogeneous 2-D particle distributions. Were this linear behaviour
confirmed in 3-D highly non-uniform cases, the FMA would really be appealing for use in
astrophysical simulations.

In this paper, we compare CPU-times of our own implementations of the adaptive 3-D
FMA and the tree-code to evaluate gravitational forces amongN particles in three different
(uniform and clumped) spatial configurations.

Detailed descriptions of the tree-code and FMA can be found in [1, 9, 10]. For the pur-
pose of this paper (the performance comparison of the two above mentioned methods in
astrophysically realistic situations) we built our own computer versions of the tree-code
and FMA. Our tree-code was written following at most the [11] prescription but for the
short-range component of the interaction force (see [12]), while our FMA is slightly differ-
ent from the original proposed by Greengard [9], to make it more efficient in non-uniform
situations where adaptivity is important, and to include thesmoothingof interactions which
is quite useful in astrophysical simulations, as we will describe in Section 3.

In Sections 2 and 3 we briefly review the algorithms and give some details of our imple-
mentations, in particular for the FMA, while in Section 4 the comparison of the FMA and
the tree-code CPU-time performances is presented and discussed.

2. THE TREE-CODE

We have implementated our own version of the BHtree-code(see [1] or [10]) which
is well described in [12] (see also [11]); we will give here only a brief discussion of the
improvements we have introduced.

In the tree-code the cubic volume of side` that encloses all the particles is subdivided in 8
cubicboxes(in 3-D) and each of them is furtherly subdivided in 8children boxesand so on.
The subdivision goes on recursively until the smallest boxes (the so-calledterminal boxes)
have only one particle inside. Moreover the subdivision is local andadaptivein the sense
that it is locally as more refined as the density is higher. The logical internal representation
of this picture is a “tree data structure,” from that the denominationtree-code.

The gravitational force on a given particle inr is then computed considering the contri-
bution of the “clusters” of particles contained in boxes that are sufficiently distant from the
particle, that is, in those boxes which satisfy theopen-anglecriterion,

`l

d
< θ (1)

with d the distance between the particle and the center of mass of the cluster,`l = `/2l the
box size at levell of refinement, andθ > 0 a parameter a priori fixed. This contribution is



         

FMA AND TREE-CODE COMPARISON 31

evaluated by means of a truncated multipole expansion that permits the representation of
the set ofn particles contained in the box with a unique “entity” identified by a relatively
low number of attributes (the total mass, the center of mass, the quadrupole moment,. . . ,
that is, the set of multipole coefficients), that are stored, in a previous step, in the tree data
structure. In this way the evaluation of interactions is speeded-up compared to a direct pair-
to-pair evaluation. Usually in tree-codes second order expansions are used, that is, up to the
quadrupole term, this approximation being sufficient in typical astrophysical simulations.
Those boxes that do not satisfy the condition (1), will be “opened” and theirchildrenboxes
will be considered. This “tree descending” continues until one reaches a terminal box whose
contribution to the field will be calculateddirectly.

The parameterθ and the order of truncation of the expansion permit control of the error
made in the evaluation of the field in the generic particle position. With the second order of
approximation we used and withθ in the interval [0.7, 1] one obtains a relative error less
than about 1%, as we will see in the following.

In our version of the tree-code we considered agravitational smoothing. This means
that each particle is represented by aβ-spline (a polynomial function, with a compact
support, differentiable up to the second order) that gives a Newtonian potential outside the
sphere centered at the position of the particle and of radius 2ε, while inside that sphere
the field issmoothed; see, for example, [11, 12]. This smoothing avoids divergence in the
accelerations during too close approaches between particles whose trajectories would be not
well integrated in time by the usual numerical procedures (like, for example, theleap-frog
scheme). In the particular case of ourstatictest, i.e., without considering any time evolution,
the smoothing would only be an unnecessary complication; consequently in these tests we
fix ε = 0 for every particle (exactly Newtonian potential).

However, because of the presence, in general, of a smoothing of the field we have modified
the open angle criteria in the following way: the box of size` with center of mass atR is
“sufficiently distant” from the particle inr , i.e., its potential can be expanded in a multipole
series, if

|R − r | > max{`/θ, 2ε}, (2)

where 2ε is the gravitational smoothing “radius” of the particle inr .

3. THE FAST MULTIPOLE ALGORITHM

In a way similar to the tree-code, the FMA is based on an approximation of the gravita-
tional field produced by a set of sufficiently distant particles over a generic particle. It uses the
same logical “octal tree-structure” of the hierarchical subdivision of the space as the tree-
code, with the only difference that instead of stopping the subdivision when boxes contain
single particles, the recursive subdivision ends up at boxes containing no more than a fixed
numbers> 1 of particles. This reduces the CPU-time required for the calculation. We still
call terminal boxesthe boxes located at the “leaves” of the logical tree-structure. Also the
FMA uses the truncatedmultipole expansion, but in a different and more complicated form.
The advantage is that of a more rigorous control of the truncation error.

The FMA takes advantage of the possibility to build a Taylor expansion—the so-called
local expansion—of the potential in a neighbourhood of a pointP, knowing the coefficients
of the multipole expansionthat gives the potential inP (see Appendix B). This local
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expansion is used to evaluate the acceleration of particles nearP, instead of re-evaluating
the multipole expansions of the field due to all collections of distant particles as it happens
with the tree-code.

Furthermore, besides particle-particle and particle-box interactions, the FMA considers
also a box-box interaction which is estimated by a truncated multipolar expansion, if and
only if the boxes are sufficiently distant from each other, that is, if they satisfy the so-called
well-separationcriterion (which substitutes the open-angle criterion of the tree-code). Boxes
which are not well-separated will be “opened” and their children boxes considered. In this
way one can control the error introduced by the truncation of the multipolar expansion,
giving this error, as we will see, a well defined upper bound.

In fact we know that if we have a set ofk particles atPi = (ρi , αi , βi ) (we will use
spherical coordinates) having massesmi , which is enclosed in a sphereA with center in
the origin and radiusa, and another set ofl particles atQi = (ri , θi , φi ) enclosed in a
sphereB centered inQ0 with radiusb, then the approximated potential generated by the
set of particles inA at the position of thei th particle inB is given by a multipole expansion
truncated at the orderp:

8̃p(Qi ) ≡ −G
p∑

n=0

n∑
m=−n

Mm
n

r n+1
i

Ym
n (θi , φi ). (3)

The functionsYm
n (θ, φ) are the spherical harmonics and

Mm
n ≡

k∑
i =1

mi ρ
n
i Y−m

n (αi , βi ). (4)

Now one can show (see [9]) that, for anyp ≥ 1,

|8(Qi ) − 8̃p(Qi )| ≤ A
ri − a

(
a

ri

)p+1

, (5)

where8 is the exact potential andA ≡ G
∑k

i =1 mi . This result gives the possibility to limit
the error introduced by approximating8 with the expression (3), if the two sets of particles
are sufficiently distant.

Let d be the distance between the centers of the two spheres and let us defineσ ≡
d − a − b as theseparationbetween them. Obviously the set of particles inB is such that
ri ≥ a + σ for any i = 1, . . . , l . Then from (5) we find

18 ≡ max
i =1,...,l

{|8(Qi ) − 8̃p(Qi )|} ≤ A
σ

(
a

σ + a

)p+1

. (6)

The maximum error of the truncated multipole expansion depends on two quantities: the
order of the expansionp and the separationσ .

In his original algorithm, Greengard introduced the concept ofwell-separationbetween
two boxes of thesame levelof refinement, i.e., with the same size`, to control the truncation
error. Suppose that such boxes are circumscribed by two spheresA andB, with equal radii
a = b = `

√
3/2; these two boxes arewell-separatedif, and only if, their separation is such
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thatσ > a, i.e.,d > 3a. In this way the upper bound on the error will be, from Eq. (6),

18 ≤ A
a

(
1

2

)p+1

. (7)

To implement this criterion, Greengard imposed simply that two boxes of the same level
arewell-separatedif, and only if, there are at leasttwo layers of boxesof that level between
them, in such a way to satisfy the inequalityd > 3a and, finally, Eq. (7).

Note that Greengard’s well-separation criterion refers exclusively to boxes at the same
level of refinement, limiting the efficiency of the algorithm especially in the case of non-
uniform distributions of particles.

We have modified this criterion to make it more efficient (in theadaptiveform of the
algorithm) to face astrophysical typical distributions very far from uniformity. Let us briefly
explain our modification.

First of all, every box is associated with a sphere that is not merely the sphere circum-
scribing the box but thesmallestone containing all its particles. So, for terminal boxes, it is
the smallest sphere concentric to the box that contains all its particles and for a non-terminal
box of size`, the sphere is also concentric to the box but the radiusr is calculated recur-
sively, knowing the radiir i (i = 1, . . . , 8) of the spheres associated to each of itschildren
unempty boxes, via the formula

r = max
i =1,...,8

{ri } + `
√

3/2. (8)

This sphere contains all the spheres associated to the children boxes.1 The value of the
radius of these spheres is stored in the “tree” data structure together with the other data
pertinent to the box and it is much more representative of the “size” of the set of particles
in the box, than the mere box size`, for controlling the truncation error.

Now consider the boxÂ centered in the originO and containing the collection ofk
particles seen before. LetA be its associated sphere with radiusa (see Fig. 1). Let the other
set of particles atQi , i = 1, . . . l , be enclosed in the box̂B whose associated sphere is the
sphereB centered inQ0 and with radiusb. The radiia, b have been evaluated by Eq. (8).
Let us suppose that the separation of the two spheres is such thatσ > δ · a, with δ > 0 a
fixed parameter (see again Fig. 1). Obviously the set of particles inB is such that, from Eq.
(6),

18 ≤ A
δ · a

(
1

δ + 1

)p+1

(9)

and we can note that the parameterδ works in a way similar toθ in the tree-code.
Hence, our criterion ofwell-separationis the following: once we fix the parameterδ, we

define two boxes aswell-separatedif the distance between their centersd is such that

d > a + b + δ · a, (10)

that is, if the separation between their associated spheres isσ > δ · a. In this way the
evaluation of the interaction between the sets of particles contained into such boxes will be
affected by a truncation error which is bounded by Eq. (9).

1 This is to preserve the same error bound as in Eq. (9), for the truncated expansions obtained translating and
composing the local and the multipole expansions as discussed in Appendix B.
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FIG. 1. Example of two well-separated boxes,ÂandB̂ (see text).AandB are the associated spheres enclosing
the two sets of particles.

The implementation of this criterion is very easy because it consists just in verifying
Eq. (10) where the radii of the spheres associated to the boxes have been already calculated
and stored, together with all the other data of each box, in the phase of the algorithm in
which the tree-structure is built.

Our criterion ofwell-separationis more efficient than Greengard’s original one, having
the following features:

• it depends upon the internal distribution of particles in the box (via the radius of the
associated sphere);

• it can involve boxes of different level of refinement, having different sizes, so to im-
prove efficiency in non-uniform situations and to make unnecessary those complicated tricks
conceived to shorten the list of the well-separated boxes like, for example, the mechanism
of “parental conversion” (see [4]);

• it can be tuned in such a way to obtain the desired accuracy, via the parameterδ;
• it can be easily modified in order to allow agravitational smoothingto be applied

to the particles, as we will see below.

Note also, see Eq. (7), that to control the truncation error, Greengard variedp according
to the desired accuracy. In our version we have, instead, fixedp= 2 and varied the para-
meterδ in order to obtain the same accuracy that is usually obtained with the tree-code in
astrophysical simulations. One has to take care with keeping reasonably low the execution
CPU-time (small compared with the human time scale!) and this is obtained at a price of a
certain loss in accuracy in the evaluation of interactions. In fact the main characteristics of
astrophysical simulations of gravitating systems are:

(1) they require a great number of particles (usually more than 104) for a rather large
duration of the simulation2 and, in particular,

(2) due to the intrinsic instability they offer a very wide distribution of time scales.

So, while simulating polar fluids in molecular dynamics one has to face “microscopic”
time scales more narrowly distributed (just because molecules tend to repulse each other

2 Severaldynamical times, that is, many times the typical time scale of the entire system, such as the sound
crossing time for a collisional system or the core-crossing time for a collisionless one.
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due to the presence of short-range interactions, like the Lennard–Jones potential) and one
can work with expansions truncated up to eighth order or more; in astrophysical simulations
one prefers to limit the precision at a lower but reasonable level and, on the other hand, to
be able to process systems which are highly dynamical. Therefore one usually works with
expansions truncated up to the second order (in some cases even the first order) that, in the
tree-code, correspond to considering up to the quadrupole moment.

For the mass density of the single particle we used the sameβ-splineprofile as we did in
our tree-code. In this way the potential is exactly Newtonian outside the sphere of radius3

2εi centered inr i , so it can be expanded in multipole seriesonly in this region. Hence the
interaction with a particle inside the sphere of radius 2εi must be necessarily evaluated by
means of adirectsummation. This requirement, which would be very difficult to incorporate
in Greengard’s criterion, has been considered via a little arrangement of ourwell-separation
criterion (10); that is, two boxes (̂A andB̂) arewell-separatedif, and only if, their spheres
(A with radiusa andB with radiusb, respectively) are such that

d ≥ a + b + max{δ · a, 2ε Â}, (11)

whered is the distance between the centers of the two spheres.
The smoothing lengthεÂ used for the boxÂ is another quantity stored in the tree data

structure and it is given by this simple recursive scheme: ifÂ is terminal, thenεÂ ≡ maxi {εi },
whereεi is the smoothing length of the particlei contained inÂ, otherwiseεÂ ≡ maxĈ{εĈ},
with the maximum taken over all the unempty children boxesĈ of Â. Anyway in the
following comparison tests, we letε = 0 (as for the tree-code), i.e., no softening, because
we are not interested in the dynamical evolution of the system.

For a more detailed description of our own implementation of the FMA see Appendixes
B and C.

4. CODES PERFORMANCE COMPARISON

4.1. A Suitable Set of Particle Distributions

To compare the CPU-time spent by the two algorithms described in the previous sections,
we ran the codes on a DEC Alpha 200-4/233 workstation with three different distributions
of particles (which are always assumed to have the same mass).

(1) In the first caseN particles have been distributeduniformlyat random in a sphere
of unitary radius.

(2) In the second case a set ofN particles has been distributed, with a Monte–Carlo
method, in a unitary sphere in such a way to discretize the “clumped” density profile,

ρ(r ) = ρ0

[1 + (r/rc)2]5/2
, (12)

with rc = 0.2 (obviouslyρ = 0 for r > 1). This is known as the Schuster [15] profile (or
as the Plummer profile in some texts); it corresponds to a polytropic sphere (of index 5)
at equilibrium (see [2]) and represents a good approximation to the density distribution of
various stellar systems.

3 In principle each particle is allowed to have its own smoothing length. This is useful when one has to simulate
gravitational interactions between bothcollisionlessandcollisionalparticles (i.e., fluid elements).
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FIG. 2. Sample ofN = 4827 galaxies in the Northern galactic hemisphere (Leda catalog). The unit on the
axes corresponds to about 80 Mpc and the origin is on the Earth.

(3) In the third case we distributedN particles according to the density distribution
of a sample ofn = 4827 galaxies in the Northern galactic hemisphere (see Fig. 2), taken
from the Leda catalog (see [5]). Other than the caseN = n, five more different sets with
N = 2n, 4n, 8n, 20n and 40n particles have been placed at random, but always reproduc-
ing the same density distribution traced by the galaxies. We will call these distributions
“cosmological.”

4.2. The Appropriate Choice of Refinement Levels

The tree-code and the FMA in our implementations are bothadaptive; this means that
the number of levels of refinement needed to reach terminal boxes is alocal quantity. Given
a distribution ofN particles, letl be the maximum of the number of subdivisions (taken
over all the space inside the “root” box) that an algorithm based on a tree structure achieves:
l tc for the tree-code andlFMA for the FMA. Obviouslyl depends on the ratio between the
minimum particle-particle distance and the size` of the root box containing all the particles.
Moreover it is alwaysl tc > lFMA, becauselFMA depends also on the number of particles (s)
the FMA leaves in terminal boxes and, being in generals > 1, it performs less subdivisions
in comparison with the tree-code.

To make homogeneous comparisons with codes of other authors, we need to limit the
spatial subdivision. In fact the value ofl strongly affects the rapidity of the algorithms. For
instance, we verified that, given the Schuster clumped profile and with a fixed number of
particles used to discretize it, passing from a distribution such asl tc = 12 andlFMA = 11
(with s = 10) to another one such asl tc = 8 andlFMA = 7, one has a speedup factor of
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about 2. Moreover the memory requirement is also affected byl especially in a recursive
implementation as ours, because at each recursive subroutine call a great amount of stack
memory is allocated each time for the automatic variables and the number of recursive calls
depends on the number of levels of refinement. Hence, we verified that it is impossible,
with an usual workstation, to refine more than the 11th level withN > 105 particles.

For all these reasons we decided to generate particle positions in such a way to keep
fixed l for both the codes. This does not mean that the algorithms become non-adaptive!
The number of levels of refinement is stilllocal, but it is limited by appropriate restrictions
on the positions that the particles can assume.

We used the following restriction: each particle must be set at a point of a regular grid.
Such a grid has a step̀/2L , with L a fixed integer. In this way the maximum “depth”
reached in the space subdivision is limited by the inequalitylFMA ≤ l tc ≤ L.

Thus the uniform and clumped distributions have been generated in such a way to give
l tc ≤ 8 andlFMA ≤ 7 (with s≥ 10 in the FMA). Instead we found that theN = n original
galaxy distribution gavel tc = 10 and lFMA = 9. Consequently in generating all the cos-
mological distributions withN > n, we kept the same limit for the maximum levels of
refinement in the space subdivision.

Of course during the time evolutions of such systems,l tends to grow due to the gravi-
tational instability, but in this context we are only interested in giving homogeneous and
comparable performance tests in the evaluation of forces only.

4.3. The Results of the Comparison Tests

The order of accuracy chosen was the same for both the tree-code and the FMA. For
accuracy we mean how close, in modulus, the evaluated forces are to those calculated
“exactly” by a direct,particle-particle(PP) method, which is affected only by the numerical
error of the computer (due to the finite number of digits). Consequently we define therelative
error of the calculationε as

ε ≡ 1

N

N∑
i

∣∣ai − aP P
i

∣∣
aP P

i

, (13)

whereai is the modulus of the acceleration of thei th particle estimated by each of the two
algorithms andaP P

i that computed by the PP method. The error on thedirection of the
forces is much lower then the error on the modulus we have defined above, and, as it is
usual in theN-body numerical method, it is not considered at all in performance tests being
negligible.

Figure 3 gives the relative error of the tree-code and of the FMA for the various distribu-
tions. The error is about the same for both the algorithms. An averaged (on all the particles)
relative error less than 1% (this is the order of magnitude of the error generally admitted in
astrophysical simulations) and almost constant is obtained with the following settings for
the various parameters:

• in the FMA we fixedδ = 2.5 and varieds in the range 10–50 considering, as we
have said, up to the second order term in the multipole expansion (p = 2);

• in the tree-code we variedθ in the range 0.65–0.75.

The CPU-time spent to calculate the accelerations vs the numberN of particles is shown
in Fig. 4. The CPU-time for theparticle-particlemethod is also shown as a reference. Both
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FIG. 3. Average relative error vs number of particles for both algorithms.

the algorithms are slower to compute forces in the non-uniform models than in the uniform
one, and for the tree-code this is more evident. This is clearly due to the more complicated
and non-uniform spatial subdivision in boxes that affects mostly the tree-code due to the
fineranddeepersubdivision of the space it uses. Anyway the tree-code is shown to be faster
than the FMA for all the distributions and forN varying in the range we tested. As expected,
the behaviour of the CPU-time,t , vsN for the tree-code is well fitted by the logarithmic law

t = αN log N + β, (14)

whereα andβ are given in Table 1. In our opinion, this logarithmic law must be followed
by the FMA, too, as we will explain in Subsection 4.4.

However, let us observe the CPU-time for the uniform case: it is not easy to distinguish
at first sight a logarithmic behaviour from a linear one; furthermore we can presume, as we
can observe in Fig. 4, that the FMA must show a more complicated behaviour due to the
presence of the parameters (the maximum number of particles left in terminal boxes) and
to thats was varied.

Blelloch and Narlikar [3] have obtained similar “undulations” in the behaviour of the
CPU-time of their version of the FMA, while the behaviour of the tree-code was much
“cleaner,” as in our tests.
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FIG. 4. CPU-time (on an Alpha 200-4/233 machine) vs the number of particles for both the algorithms and
for the direct particle-particle method.

Coming back to the accuracy, we noted that the CPU-time of both algorithms, but
especially that of the FMA, depends strongly on the error. For example, we found, for
the cosmologicalN = 8n distribution, that doubling the average error on the evaluation of
the forces means reducing the FMA CPU-time to about 40% in comparison with the more
accurate case.

We can see that our FMA becomes faster than the PP method forN > 11,000 in the
Schuster model, forN > 7,000 in the uniform case and forN > 12,000 in the cosmological
distributions.

TABLE 1

Values Obtained for the Parametersα andβ, Fitting the Behaviour of the CPU-Time for the

Tree-Code (t.c.) and the FMA with the Law t = αN log8 N + β

Uniform Clumped Cosmological

Alg. α β Alg. α β Alg. α β

t.c. 10−4 −0.1 t.c. 3· 10−4 −0.2 t.c. 3· 10−4 0.6
FMA 8 · 10−4 −2 FMA 10−3 −2 FMA 10−3 −4
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To make a comparison with codes of other authors, let us consider the FMA implemented
in 3-D by Schmidt and Lee [14] (although this codeis not adaptive) following the original
Greengard algorithm and, in particular, his well-separation criterion. Their FMA isvecto-
rizedand it runs on a CRAY Y-MP, but anyway we do not make a direct comparison, but
rather compare our “CPU-time ratio” (that is, the ratio between the CPU-time consumed
by the FMA and that consumed by the direct PP method), with the same ratio as obtained
by the codes of Schmidt and Lee,at the same order of magnitude of the error on the forces.

So we can note (see [14]) that forN = 104 uniformly distributed particles, a truncation
of eighth order (p = 8) andfive levels of refinement, they obtain a CPU-time of 418 s for
their FMA, against 11 s spent by thedirectPP method, with a relative error on the forces of
about 1.4 · 10−3. Thus they obtain a ratiotFMA/tP P ∼ 40, while with our codes we see that
for the uniform distribution withN = 104 andsevenlevels of refinement, we have an error
on the forces that is∼3 · 10−3 (see Fig. 3) with a CPU-time ratiotFMA/tP P ∼ 0.8, i.e., our
FMA spends about 80% of the CPU-time spent by the PP method (see Fig. 4). This ratio is
certainly lower if we use only five levels of refinement, also in the case of an error on the
forces close to their one.

This seems a very good result.

4.4. Scaling of CPU-Times versus N

Greengard and other authors [4, 9, 13] assert that the FMA would exhibit alinear scaling
of the CPU-time vsN. We tried to fittFMA as a function ofN, with various laws, the linear
included. The result is that alogarithmicbehaviour like that of Eq. (14), gives the best fit,
as for the tree-code.

From Fig. 4 and Table 1 we can see that the tree-code is roughly 2–4times fasterthan the
FMA in the “astrophysical” more clumped distributions, while in uniform situations (with
the order of accuracy we fixed) the FMA goes even slower.

Note, in fact, how the difference of performances reduces slightly passing to more
clumped distributions; this is because, as we have said, the FMA is less sensitive to the
degree of uniformity of the distribution of the particles than the tree-code which uses a finer
subdivision of the space in boxes (as it corresponds tos = 1).

The higher speed of the tree-code compared to the FMA is easily understood, at least
in 3-D, since while in theory the FMA is more efficient and less “redundant” in managing
information (remember the use of the Taylor expansion of the potential on near bodies), in
practice this “potential” greater efficiency pays the price of a certain quantity of computa-
tional “complications.” This carries the method to a negative total balance in terms of speed
with respect to the competing tree-code.

How can we interpret the CPU-time scaling?
The logarithmic behaviour of the tree-code is explained by a simple estimate of the

number of operations needed by the various steps of the algorithm (see, e.g., [1, 10, 12]).
It is roughly given by the product between the number of particlesN by the number of
“bodies” (boxes or particles), about log8 N, which contribute to the force on each particle.
Hencettc ∼ N log8 N.

The logarithmic behaviour of the FMA can be similarly understood when one reconsiders
carefully the cost of each step of the algorithm.

It can be estimated (see [9]) that

tFMA ∼ aN + bNter + cNne, (15)
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that is, the CPU-time is alinear functionof N, Nter (the number of allterminal boxes),
andNne (the number of all non-empty boxes). Greengard [9] in his final considerations on
the scaling of the FMA in the adaptive 2-D version (the 3-D case is similar) estimates the
number of these types of boxes (see Lemmas 2.6.4 and 2.6.5 in [9]) to be

Nter ∼ 4 · L · N

s
(16)

Nne ∼ 5 · L · N

s
, (17)

whereL is the totalnumber of subdivisionsneeded to reach terminal boxes. ThisL is iden-
tified by Greengard withL ∼ log2(1/1), where1, a priori fixed, is thespatial resolution
that one wants to reach in the simulation. With1 fixed,L would beindependentof N, thus
Nter and Nne, in Eq. (15), are quantities linear inN. Then the FMA CPU-time estimated
by Eq. (15) is linear inN too.

The crucial point is that a constant1 (andL) only allows manipulation of distributions
of particles with1 < rmin, with rmin the minimum distance between a pair of particles (see
observation 2.5.1 in [9]).

Obviously, in 3-D,rmin ∼ N−1/3, so that1 < rmin implies

L & 1

2
log2 N = log8 N. (18)

Substituting this inequality in the expressions (16) and (17) forNne andNter, one obtains
from Eq. (15) thattFMA & N log8 N, that is, the same “natural” scaling of the tree-code.

The FMA, to be competitive with the tree-code in astrophysical simulations (with the
numbers of particles currently used), needs substantial improvements. Some of these im-
provements have already been achieved, but only in a molecular dynamics context, where
a higher accuracy is requested (see [7]). To get an indication of the direction where one has
to proceed for such an improvement, we made a “profile” of the CPU-time spent by the
various parts of the algorithm. This profile is shown in some detail in the Appendix A.

We note that the particularimplementationof the forces evaluation by means of the
various truncated expansions (together with the manipulations operated on them) makes
the difference with the tree-code and deserves to be further optimized. In fact, in the tree-
code the same multipolar expansions are used, but in a way much more optimized than in
the FMA, because in the tree-code one truncatesa priori the expansion at the quadrupole
(p = 2) moment. Moreover one usesreal coefficients(the mass, center of mass, etc.) which
satisfy simpler composition and translation rules than the multipolar and Taylorcomplexes
coefficients used in the FMA. We think a similar way to proceed has to be introduced in an
“astrophysical” (i.e., with a priori fixedp) Fast Multipole Algorithm, in order to make it
competitive with the tree-code.

5. CONCLUSIONS

Realistic astrophysical simulations require a large amount of computation to evaluate
gravitational forces. Many codes which give a rapid numerical evaluation of the force field
have been proposed in the literature. In this paper we compare two of these codes: one (the
BH tree-code) has been largely used in astrophysics for ten years; the other (the Greengard’s
FMA [9]) has given promising results in the field of molecular dynamics.
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We have so implemented our own optimizedserial versions of both the tree-code and
adaptive, 3-D, FMA.

The results of our comparison tests indicate the tree-code as faster than the FMA over
all the interval of total number of particles (N ≤ 2 · 105) allowed by the central memory
capacity of a “typical” workstation. This maximum value ofN, which could appear low
with respect to modern parallel simulations where it can reach 107, is anyway meaningful
because even in fully parallel codeseachprocessor cannot manipulate more than about
104–105 particles. The problems in the parallelization of the two codes are comparable, due
to their similar structure; thus the higher speed of the tree-code, here verified in a serial
context, should be confirmed in the parallel implementation and it seems a valid reason to
concentrate efforts for the most efficient parallelization of the tree-code.

At the end of this paper we have discussed the dependence of the FMA CPU-time onN
and given an explanation for why its behaviour is similar to that of the tree-code.

APPENDIX A: ANALYSIS OF THE CPU-TIME CONSUMPTION FOR THE FMA

Table 2 shows the CPU-time spent by the various subroutines in our FMA implementation,
during a run withN = 1.2·105 particles distributed according to the clumped density profile.
The routine BUILD builds the tree structure setting all the pointers and the links among
parent-children boxes, classifying boxes in terminal and non-terminal, and so on. The routine
EVAL stores in this structure all the data related to each box (the various multipolar and
Taylor coefficients, the radius of the associated sphere, etc.).

The functions ARMR and ARMI give, respectively, the real and the imaginary part of the
various spherical harmonics needed in the expansions. The functions GARMij give instead
the real and the imaginary part (j = R, I , respectively) of all components (i = X, Y, Z)
of the gradient of the spherical harmonics.

The routine FORCE1 evaluates the force acting on a given box due to all the rest of
the system, while FORCE2 evaluates the force acting on a boxA due to another boxB,
considering all the possible cases (both boxes, only one, or none are terminal; they are, or
not, well-separated, etc.). All these routines arerecursive, except the functions.

It is evident that most of the CPU-time is spent by FORCE2 (80% of the total). Thus,
in this CPU-time profile, this routine has been split into four parts in order to investigate
better what part is the most CPU-time expensive. These parts are listed in Table 2 as:

TABLE 2

Percentages of the Total CPU-Time Spent by the Different Routines of the

FMA in the Run with N = 1.2 · 105 Particles in the Clumped Case

Routine t (%) Routine t (%)

FORCE2.transf 35 GARMYR 2
FORCE2.direct 22 GARMYI 2
FORCE2.mult 18 GARMZR 2
FORCE2.other 5 GARMZI 2
ARMR 4 BUILD 1
ARMI 2 FORCE1 0.5
GARMXR 2 MAIN 0.4
GARMXI 2 EVAL 0.1

Note. The total CPU-time has been 800 s.
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• FORCE2.direct, which performs the direct calculations of the forces on the particles
in A due to those inB (when both boxes are terminal):

• FORCE2.transf which transforms the multipole coefficients pertinent to a well-
separated boxB into Taylor coefficients of the boxA;

• FORCE2.mult which evaluates the forces due to the boxB on the particles inA by
means of the multipole expansion (whenA is terminal); and, finally,

• FORCE2.other representing the rest of the routine.

Note that the “approximate” calculations (both box-box and box-“terminal box” inter-
actions via multipolar expansion) use about the 53% of the total CPU-time, while direct
force evaluations (both “terminal box”-“terminal box” interactions) use 22%. Finally, note
that the phase of tree structure construction and data storage (BUILD+ EVAL) takes only
about 1% of the total CPU-time.

APPENDIX B: MANIPULATION OF MULTIPOLE EXPANSIONS IN THE FMA

Here we briefly describe the three theorems, due to Greengard [9], that permit the mani-
pulation, in 3-D, of the various series expansions used in the algorithm, and that are useful
for the deeper and formal description of our own implementation that follows in the next
Appendix C.

We have said that one can “transform” the multipole expansion (3) into alocal expansion
useful to evaluate the field about a given pointP. More precisely, given the set ofk particles
at Pi in the sphereA (associated to the box̂A, see Fig. 1) which produce the gravitational
potential8(Qi ) over the set of particles in the sphereB (box B̂) with centerQ0, then one
can show that in the vicinity ofQ0 the approximated potential

9p(Qi ) = −G
p∑

j =0

j∑
k=− j

Lk
j Y

k
j (θ

′
i , φ

′
i )(r

′
i )

j , (B1)

whereQi − Q0 = (r ′
i , θ

′
i , φ

′
i ), differs from the exact8(Qi ) of an amount bounded by the

same expression that appears in the r.h.s. of Eq. (9). In this truncatedlocal expansionthe
coefficients are given by

Lk
j =

p∑
n=0

n∑
m=−n

S(1)
j,k,n,mMm

n Ym−k
j +n (αi , βi )(ρi )

− j −n−1, (B2)

Mm
n being thesameone that appears in the expression (3) andS(1) a matrix of coefficients

(see Appendix D).
Another theorem allows us to calculateMm

n in a recursivemanner. Let us consider the
partitionof the set ofk particles in the box̂A, in theq ≤ 8 subsets each of them enclosed in the
spheres associated to the children boxes ofÂand with centers in(ρ(1), α(1), β(1)), . . . , (ρ(q),
α(q), β(q)). Let Mm(1)

n , Mm(2)
n , . . . , Mm(q)

n be the multipole coefficients calculated for each of
the subsets of particles. If all these spheres are enclosed in the sphereA (this is automatically
satisfied because of Eq. (8)), the coefficientsMk

j given by

Mk
j =

j∑
n=0

n∑
m=−n

S(2)
j,k,n,mMk−m(q)

j −n Y−m
n

(
α(q), β(q)

)(
ρ(q)
)n

(B3)
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(see the Appendix D for the matrixS(2)) give a potential

8̃p(P) = −G
p∑

n=0

n∑
m=−n

Mm
n

r n+1
Ym

n (θ, φ) (B4)

(whereP = (r, θ, φ) is a generic pointoutsidethe sphereA), whichwell approximatesthe
exact potential8(P) generated byall the k particles in the sphereA. In fact if P is the
position of a particle in thewell-separatedbox B̂, then one can show that

|8̃(P) − 8(P)| ≤
(

G
∑k

i mi

r − a

)(
a

r

)p+1

<
G
∑k

i mi

δ · a

(
1

δ + 1

)p+1

. (B5)

The truncation error has the same upper bound given by (9).
So we can computeMk

j associated to the box̂A containing the total set of particles
knowing only those pertinent to theq subsets in each children box. In the tree-code the
same happens, but there the analogous theorem—the “quadrupole composition theorem”—
has been developedspecificallyfor the quadrupole moment by Goldstein [8] (those for the
monopole and the dipole are obvious). In the FMA this theorem works for coefficients of
any order and it has an upper error bound.

Thus, once theMm
n have been calculated for allterminalboxes using the definition (4),

by means of (B3) we can compute recursively the coefficients ofparentboxes ascending the
tree-structure. This coefficients will be transformed, when needed, in the local expansion
coefficients (as we will see in more detail in Appendix C) necessary to calculate forces by
(B1). In this way, we will be sure that the error made in approximating the “true” potential
with the various expansions, will always be bounded by Eq. (B5).

The last theorem relates to the translation and composition of thelocal expansioncoeffi-
cients (brieflyTaylor coefficients). In this case the rules of composition work, in a certain
sense, inversely. That is, given the coefficientsLk

j relative to the set ofk particles in the
sphereA, such that the potential9p(P) (P = (r, θ, φ) is a pointinside A) given by the
truncated local expansion about the originO,

9p(P) ≡ −G
p∑

j =0

j∑
k=− j

Lk
j Y

k
j (θ, φ)r j , (B6)

is such that

|9p(P) − 8(P)| <
G
∑k

i mi

δ · a

(
1

δ + 1

)p+1

, (B7)

then at the same point but with another originQ ∈ A, we have the equality

9p(P) = −G
p∑

j =0

j∑
k=− j

L Qk

j Yk
j (θ

′, φ′)(r ′) j , (B8)

whereP − Q = (r ′, θ ′, φ′) and where the new translated coefficients are

L Qk

j =
p∑

n= j

n∑
m=−n

S(3)
j,k,n,mLm

n Ym−k
n− j (α, β)ρn− j (B9)

beingO − Q = (ρ, α, β) (for the matrixS(3) see Appendix D).
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Thus given theLk
j for a box, we can compute the Taylor coefficients for all the unempty

children boxesusing the above formula, with the new originQ at the center of each children
boxes. The process has to be recursively iterated until we reach terminal boxes. But how
can we obtain the coefficientsLk

j of a box B “the first time” (not knowing those of its
parent box)? Obviously they will be calculated by means of Eq. (B2), transforming the
multipole coefficients ofsufficiently distantboxes, that is, of boxes that arewell-separated
from B.

APPENDIX C: FORMAL DESCRIPTION OF THE FMA ALGORITHM

Here we describe in deeper detail our version of the FMA algorithm that is slightly
different from the original Greengard algorithm in the adaptive implementation. This dif-
ferences regard mainly the way interactions between distant boxes and the set of particles in
a terminal box are calculated. Moreover, as we have said, we have modified the Greengard
well-separationcriterion to take into account the presence of asmoothingof the interaction
that in astrophysical simulations, contrary to molecular dynamics, must be included.

Let us first introduce some useful definitions: in the followings indicates the maximum
number of particles in theterminal boxesand the script letters refer to collections of boxes
while simple capitals letters refer to a single box.

• lmax is the maximum level of refinement reached in the space subdivision;
• l A indicates the level of boxA, whereas the level of theroot box R, that is, the box

containing all the particles, is 0;
• B(l ) is the set of all boxes at levell of refinement;
• M(A) is theparentbox of boxA;
• C(A) is the set of allchildren boxesof box A;
• C(S) ≡ ∪A∈S C(A) is the set of all children boxes of each box in the setS;
• X (A) indicates the set of boxes, of levell A or l A + 1, that areNOT well separated

from box A. The set contains all thebrothersof box A, but notA itself;
• T is the set ofterminal boxes, that is, such boxes that have no children because they

contain less thans + 1 particles, so they have not been subdivided;
• nA, with A ∈ T , is the number of particles inside the terminal boxesA (obviously

nA ≤ s);
• dAB represents the distance between the geometrical centers of boxesA andB;
• εA is the length of thegravitational smoothingrelative to the boxA;
• r A is the radius of the sphere that contains all the particles in the boxA and that is

concentric to it (see text).

The notation “don = a, b” (with b> a integers) means that all passages included between
this statement and the correspondent “end do” are repeatedb− a + 1 times and every time
the integer variablen takes the valuesa, a + 1, . . . , b − 1, b, like in Fortran; while the
notation “doA ∈ S” means, in this case, that every time the loop is executed thebox A
represents one of the various boxes in the setS. So the statements between “do” and the
related “end do” are repeated Card{S} times and each time with a different boxA ∈ S. For
example, ifS = {A1, A2, A3, . . . , An}, the boxA is A1 the first time the loop is executed,
A2, the second time, and so on. However, the order the boxes have in the setS has no
importance in the algorithm. On the contrary in the first case of “do ... end do,” the order in
the values thatn takes every time is important. Another notation is the “do whilecondition”
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meaning that the statements between this “do while ...” and the correspondent “end do” will
be executedwhile the logical condition keepstrue.

Calculate recursively the multipole coefficients for all the boxes of each level, starting
from the terminal boxes. This procedure is the same as that in the tree-code, but with the
difference that in the FMA the multipole expansion is calculated with the origin in the
geometrical center of the boxes, so the first order coefficient (the dipole moment) does
not vanish. Another complication is that in the FMA these coefficients are necessarily
complex quantities. For terminal boxes use Eq. (4), while for the others use Eq. (B3).

Calculate the radiusr of the sphere that contains all the particles in each box. If a box
is terminal thenr ≡ maxi {|r i − R|}, wherer i is the position of the particlei in the box
andR is its center. If it is not a terminal box the radius is calculated by means of (8).

let X (R) = Ø
do l = 1, lmax

do C ∈ B(l )
letX (C) = Ø

if l > 1 then translate, if they exist, the coefficients of the local expansion of the
parent boxM(C) about the center of boxC using Eq. (B9).

if C 6∈ T then [the boxC isn’t terminal]
do B ∈ X (M(C))

if dBC ≥ max{2εB, δ · r B} + r B + rC then
convert the multipole coefficients of boxB to Taylor coefficients about the
center of boxC with Eq. (B2), because it iswell separatedfrom C and
the sphere where the field generated by the masses inB is smoothed, does
not intersectthe sphere associated toC. Sum the Taylor coefficients to the
pre-existent ones.

else
do B1 ∈ C(B)

if dB1C ≥ max{2εB1, δ · r B1} + r B1 + rC then
convert the multipole coefficients of boxB1 to Taylor coefficients of
box C with Eq. (B2), because it iswell separatedfrom C and the
sphere where the field generated by the masses inB1 is smoothed, does
not intersectthe sphere associated toC. Sum the Taylor coeff. to the
pre-existent ones.

else
put B1 into the collectionX (C).

end if
end do

end if
end do

else[the boxC is terminal]
let A = X (M(C))

do whileA not empty
do B ∈ A

if B ∈ T then [the boxB is terminal]
eliminate B from the setA
do i = 1, nC
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do j = 1, nB

Sum directly (i.e., without any expansion) to the grav. field on the
particle i that due to the particlej taking into account thegrav.
smoothing

end do
end do

else[the boxB isn’t terminal]

if dBC ≥ max{2εB, δ · r B} + r B + rC then [the boxC is well-sep.from
the boxB and it is outside its smoothing sphere]

eliminate B from the setA
Sumto theTaylor coefficientsof the boxC those obtained transforming
themultipole coefficientsof the boxB by means of (B2).

end if
end if

end do
letA = C(A) [Now indicate withA the collection of all the children boxes of
each box in the precedent setA. This means that we are descending the tree to
the next level]

end do
do i = 1, nC

Calculate the local expansion of the grav. field in the position of the particle
i , using Eq. (B1) and the coefficients pertinent to the boxC, summing to the
accelerations calculated up to now.

end do
end if

end do
end do

Note that we have simplified the way forces on the particles in terminal boxes are evalu-
ated. In Greengard’s adaptive algorithm this is made by means of complicated passages and
classifications of boxes into many several collections that are computationally expensive to
build up.

In our opinion this complication is unnecessary, because when one has to consider a
terminal box for which one has the long-range component of the potential in terms of
Taylor coefficients (translated from those of its parent box), one has only to calculate
the short-range forces on then particles (withn < s) inside the terminal box, due to a
certain set of near boxes and this can be done in the most efficient way by means of the
same kind of passages that in thetree-codeare used to evaluate the force on a single
particle.

Suppose we have to evaluate forces onnC particles in the terminal boxC. When we
deal with a non-terminal boxB and this box isnot well-separated fromC, then it will be
subdivided considering its children boxes and the subdivision is recursively repeated until
we reach either terminal or well-separated boxes. The contribution due to terminal boxes will
be calculateddirectly, that is, summing particle-particle interactions. The contribution due
to well-separated boxes will be evaluated converting their multipole expansion coefficients
into Taylor ones, summing them to the pre-existent coefficients of the boxC and then, in a
following passage, using these coefficients and the Taylor expansion to evaluate gravitational
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forces at the points occupied by the particle inC. This is done in the last statements of the
above description (from the “do while ...” forward).

APPENDIX D: THE MATRICES OF COEFFICIENTS

Defining Ak
j ≡ (−1) j [( j − k)!( j + k)!]−1/2, we have

S(1)
j,k,n,m ≡ Bm

k,n Am
n Ak

j

/
Am−k

j +n (D1)

S(2)
j,k,n,m ≡ Ck−m

m Am
n Ak−m

j −n

/
Ak

j (D2)

S(3)
j,k,n,m ≡ Dm

n− j,m−k Am−k
n− j Ak

j

/
Am

n , (D3)

where

Bm
k,n ≡ (−1)n

{
(−1)min{|m|,|k|} if m · k > 0
1 otherwise

(D4)

Cs
r ≡

{
(−1)min{|r |,|s|} if r · s < 0
1 otherwise

(D5)

Ds
n,m ≡ (−1)n


(−1)m if m · s < 0
(−1)s−m if m · s > 0 and|s| < |m|
1 otherwise.

(D6)
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