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We present tests of comparison between our versions of the Fast Multipole Algo-
rithm (FMA) and the tree-code to evaluate gravitational forces in particle systems.
We have optimized Greengard'’s original version of FMA allowing for a more effi-
cient criterion ofwell-separationbetween boxes, to improve tlagaptivity of the
method (which is very important in highly inhomogeneous situations) and to per-
mit the smoothingof gravitational interactions. The results of our tests indicate that
the tree-code is 2—4 times faster than the FMA for clumped distributions and 3—9
times for homogeneous distributions, at least in the intervd dfere investigated
(N < 2.10P) and at the same level of accuracy (errdi0-3). This order of accuracy
is generally considered as the best compromise between CPU-time consumption and
precision for astrophysical simulations. Moreover, the claimed linear dependence
on N of the CPU-time of the FMA is not confirmed and we give a “theoretical”
explanation for that. © 1998 Academic Press

1. INTRODUCTION

The availability of fast computers is allowing rapid development of simulations of la
N-body systems in Astrophysics, as well as in other fields of physics where the beha
of large systems of particles is investigated.

The heaviest computational part of a dynamical simulation of such systems (comg
by point masses and/or smoothed particles representing a gas) is the evaluation
long-rangeforce, such as the gravitational one, acting on every particle and due to al
other particles of the system. Astrophysically realistic simulations require very Nrg
(greater than 1%), making the direct~N? pair gravitational interaction evaluations toc
slow to perform. To overcome this problem various approximate techniques to com
gravitational interactions have been proposed.
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Among them, the tree-code algorithm proposed by Barnes and Hut (hereafter BH,
[1]) is now widely used in Astrophysics because it does not require any spatial fixed g
(like, for example, methods based on the solution of Poisson’s equation). This allow
to follow very inhomogeneous and variable in time situations, typical of self-gravitatir
systems out of equilibrium. In fact its intrinsic capability to give a rapid evaluation of force
allows the dedication of more CPU-time to follow fast dynamical evolution, in contra
to other higher accuracy methods that are more suitable for other physical situations, |
molecular dynamics for polar fluids, where the Coulomb term is present.

While for the tree-code the CPU-time requirement scalell &5 N, in the recently
proposed Fast Multipole Algorithm (hereafter the FMA, see [9]) this time is claimed to sce
asN, at least in quasi-homogeneous 2-D patrticle distributions. Were this linear behavi
confirmed in 3-D highly non-uniform cases, the FMA would really be appealing for use
astrophysical simulations.

In this paper, we compare CPU-times of our own implementations of the adaptive
FMA and the tree-code to evaluate gravitational forces amidparticles in three different
(uniform and clumped) spatial configurations.

Detailed descriptions of the tree-code and FMA can be found in [1, 9, 10]. For the pi
pose of this paper (the performance comparison of the two above mentioned methoc
astrophysically realistic situations) we built our own computer versions of the tree-cc
and FMA. Our tree-code was written following at most the [11] prescription but for tt
short-range component of the interaction force (see [12]), while our FMA is slightly diffe
ent from the original proposed by Greengard [9], to make it more efficient in non-unifor
situations where adaptivity is important, and to includestm®othingf interactions which
is quite useful in astrophysical simulations, as we will describe in Section 3.

In Sections 2 and 3 we briefly review the algorithms and give some details of our imp
mentations, in particular for the FMA, while in Section 4 the comparison of the FMA ar
the tree-code CPU-time performances is presented and discussed.

2. THE TREE-CODE

We have implementated our own version of the Bek-code(see [1] or [10]) which
is well described in [12] (see also [11]); we will give here only a brief discussion of tf
improvements we have introduced.

In the tree-code the cubic volume of sidihat encloses all the particles is subdivided in 8
cubicboxeqin 3-D) and each of them is furtherly subdivided iot8ldren boxesnd so on.
The subdivision goes on recursively until the smallest boxes (the so-tattathal boxeys
have only one particle inside. Moreover the subdivision is localadaptivein the sense
that it is locally as more refined as the density is higher. The logical internal representa
of this picture is a “tree data structure,” from that the denomindtes-code

The gravitational force on a given particleriris then computed considering the contri-
bution of the “clusters” of particles contained in boxes that are sufficiently distant from t
particle, that is, in those boxes which satisfy tpen-anglecriterion,

% <0 (1)
with d the distance between the particle and the center of mass of the ctyustef/2' the
box size at level of refinement, and > 0 a parameter a priori fixed. This contribution is
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evaluated by means of a truncated multipole expansion that permits the representati
the set ofn particles contained in the box with a unique “entity” identified by a relative
low number of attributes (the total mass, the center of mass, the quadrupole moment
that is, the set of multipole coefficients), that are stored, in a previous step, in the tree
structure. In this way the evaluation of interactions is speeded-up compared to a direct
to-pair evaluation. Usually in tree-codes second order expansions are used, that is, up
quadrupole term, this approximation being sufficient in typical astrophysical simulatic
Those boxes that do not satisfy the condition (1), will be “opened” and ¢thédrenboxes
will be considered. This “tree descending” continues until one reaches a terminal box wi
contribution to the field will be calculatedirectly.

The paramete# and the order of truncation of the expansion permit control of the ert
made in the evaluation of the field in the generic particle position. With the second orde
approximation we used and within the interval [0.7, 1] one obtains a relative error les
than about 1%, as we will see in the following.

In our version of the tree-code we consideregravitational smoothingThis means
that each particle is represented by8@pline (a polynomial function, with a compact
support, differentiable up to the second order) that gives a Newtonian potential outsid
sphere centered at the position of the particle and of radiusvile inside that sphere
the field issmoothedsee, for example, [11, 12]. This smoothing avoids divergence in t
accelerations during too close approaches between particles whose trajectories would
well integrated in time by the usual numerical procedures (like, for examplédbefrog
scheme). Inthe particular case of statictest, i.e., without considering any time evolution
the smoothing would only be an unnecessary complication; consequently in these tes
fix e = O for every particle (exactly Newtonian potential).

However, because of the presence, in general, of a smoothing of the field we have mo
the open angle criteria in the following way: the box of sizeith center of mass & is
“sufficiently distant” from the particle in, i.e., its potential can be expanded in a multipols
series, if

IR —r| > maxt/0, 2¢}, (2)

where 2 is the gravitational smoothing “radius” of the particlerin

3. THE FAST MULTIPOLE ALGORITHM

In a way similar to the tree-code, the FMA is based on an approximation of the grav
tional field produced by a set of sufficiently distant particles over a generic particle. It use:
same logical “octal tree-structure” of the hierarchical subdivision of the space as the
code, with the only difference that instead of stopping the subdivision when boxes cor
single particles, the recursive subdivision ends up at boxes containing no more than a
numbers > 1 of particles. This reduces the CPU-time required for the calculation. We <
call terminal boxedhe boxes located at the “leaves” of the logical tree-structure. Also t
FMA uses the truncatedultipole expansiorbut in a different and more complicated form.
The advantage is that of a more rigorous control of the truncation error.

The FMA takes advantage of the possibility to build a Taylor expansion—the so-ca
local expansior-of the potential in a neighbourhood of a poitknowing the coefficients
of the multipole expansiorihat gives the potential i (see Appendix B). This local
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expansion is used to evaluate the acceleration of particlesfheastead of re-evaluating
the multipole expansions of the field due to all collections of distant particles as it happ:
with the tree-code.

Furthermore, besides particle-particle and particle-box interactions, the FMA consid
also a box-box interaction which is estimated by a truncated multipolar expansion, if ¢
only if the boxes are sufficiently distant from each other, that is, if they satisfy the so-cal
well-separatiorcriterion (which substitutes the open-angle criterion of the tree-code). Box
which are not well-separated will be “opened” and their children boxes considered. In t
way one can control the error introduced by the truncation of the multipolar expansi
giving this error, as we will see, a well defined upper bound.

In fact we know that if we have a set &fparticles atP, = (pi, @i, i) (we will use
spherical coordinates) having massgs which is enclosed in a sphe#ewith center in
the origin and radius, and another set df particles atQ; = (ri, 6;, ¢i) enclosed in a
sphereB centered inQp with radiusb, then the approximated potential generated by th
set of particles imA at the position of théth particle inB is given by a multipole expansion
truncated at the ordep:

®p(Q) = —GZ Z nﬂlvg”(ei,qbi). €)

n=0 m=-n I

The functionsY"(0, ¢) are the spherical harmonics and

k
=> mipY, . B). (4)
i=1
Now one can show (see [9]) that, for apy> 1,

. p+1
D(Q) — Bp(Q)l < 2 (f‘) , 5)

r—a

whered is the exact potential and = G Zik=1 m; . This result gives the possibility to limit
the error introduced by approximatidgwith the expression (3), if the two sets of particles
are sufficiently distant.

Let d be the distance between the centers of the two spheres and let us alefine
d — a — b as theseparationbetween them. Obviously the set of particlesBifis such that
ri >a-+o foranyi =1,...,l. Then from (5) we find

) p+1. ©

The maximum error of the truncated multipole expansion depends on two quantities:
order of the expansiop and the separatios.

In his original algorithm, Greengard introduced the conceptealf-separatiorbetween
two boxes of thesame levedf refinement, i.e., with the same sizeo control the truncation
error. Suppose that such boxes are circumscribed by two spAenedB, with equal radii
a = b = ¢/3/2; these two boxes aweell-separatedf, and only if, their separation is such

..... o+a
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thato > a, i.e.,d > 3a. In this way the upper bound on the error will be, from Eq. (6),

A 1 p+1
AD < a (2> . @)

To implement this criterion, Greengard imposed simply that two boxes of the same |
arewell-separatedf, and only if, there are at leasto layers of boxesf that level between
them, in such a way to satisfy the inequality- 3a and, finally, Eq. (7).

Note that Greengard’s well-separation criterion refers exclusively to boxes at the s
level of refinement, limiting the efficiency of the algorithm especially in the case of nc
uniform distributions of particles.

We have modified this criterion to make it more efficient (in Huaptiveform of the
algorithm) to face astrophysical typical distributions very far from uniformity. Let us brief
explain our modification.

First of all, every box is associated with a sphere that is not merely the sphere circ
scribing the box but themallesibne containing all its particles. So, for terminal boxes, it i
the smallest sphere concentric to the box that contains all its particles and for a non-terr
box of sizet, the sphere is also concentric to the box but the radigscalculated recur-
sively, knowing the radif; (i =1, ..., 8) of the spheres associated to each othtddren
unempty boxewia the formula

r= max(ri} + 0/3)2. (8)
This sphere contains all the spheres associated to the childrenh@kesvalue of the
radius of these spheres is stored in the “tree” data structure together with the other
pertinent to the box and it is much more representative of the “size” of the set of parti
in the box, than the mere box sizgfor controlling the truncation error.

Now consider the boXA centered in the origifD and containing the collection d¢
particles seen before. Létbe its associated sphere with radiusee Fig. 1). Let the other
set of particles aQ;,i = 1, ...1, be enclosed in the boR whose associated sphere is the
sphereB centered inQq and with radius. The radiia, b have been evaluated by Eq. (8).
Let us suppose that the separation of the two spheres is such that- a, withs > 0 a
fixed parameter (see again Fig. 1). Obviously the set of particlBdsrsuch that, from Eq.

©)
A 1 p+1
so =7 (543) ©

and we can note that the parametevorks in a way similar t@ in the tree-code.
Hence, our criterion ofvell-separatioris the following: once we fix the parametgwe
define two boxes awell-separatedf the distance between their centerss such that

d>a+b+4-a, (20)

that is, if the separation between their associated spheres-i8 - a. In this way the
evaluation of the interaction between the sets of particles contained into such boxes w
affected by a truncation error which is bounded by Eq. (9).

1 This is to preserve the same error bound as in Eq. (9), for the truncated expansions obtained translatir
composing the local and the multipole expansions as discussed in Appendix B.
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FIG.1. Example of two well-separated boxdsandB (see text)AandB are the associated spheres enclosing
the two sets of particles.

The implementation of this criterion is very easy because it consists just in verifyi
Eq. (10) where the radii of the spheres associated to the boxes have been already calct
and stored, together with all the other data of each box, in the phase of the algorithn
which the tree-structure is built.

Our criterion ofwell-separationis more efficient than Greengard'’s original one, having
the following features:

e it depends upon the internal distribution of particles in the box (via the radius of tl
associated sphere);

e it can involve boxes of different level of refinement, having different sizes, so to in
prove efficiency in non-uniform situations and to make unnecessary those complicated tr
conceived to shorten the list of the well-separated boxes like, for example, the mechar
of “parental conversion” (see [4]);

e it can be tuned in such a way to obtain the desired accuracy, via the parameter

e it can be easily modified in order to allowggavitational smoothindgo be applied
to the particles, as we will see below.

Note also, see Eq. (7), that to control the truncation error, Greengard yasiecbrding
to the desired accuracy. In our version we have, instead, fixe@ and varied the para-
meters in order to obtain the same accuracy that is usually obtained with the tree-codk
astrophysical simulations. One has to take care with keeping reasonably low the exect
CPU-time (small compared with the human time scale!) and this is obtained at a price
certain loss in accuracy in the evaluation of interactions. In fact the main characteristic
astrophysical simulations of gravitating systems are:

(1) they require a great number of particles (usually more th&pf@a rather large
duration of the simulatiohand, in particular,
(2) due to the intrinsic instability they offer a very wide distribution of time scales.

So, while simulating polar fluids in molecular dynamics one has to face “microscopi
time scales more narrowly distributed (just because molecules tend to repulse each ¢

2 Severaldynamical timesthat is, many times the typical time scale of the entire system, such as the sou
crossing time for a collisional system or the core-crossing time for a collisionless one.
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due to the presence of short-range interactions, like the Lennard—Jones potential) an
can work with expansions truncated up to eighth order or more; in astrophysical simulat
one prefers to limit the precision at a lower but reasonable level and, on the other han
be able to process systems which are highly dynamical. Therefore one usually works
expansions truncated up to the second order (in some cases even the first order) that,
tree-code, correspond to considering up to the quadrupole moment.

For the mass density of the single particle we used the gasptineprofile as we did in
our tree-code. In this way the potential is exactly Newtonian outside the sphere ofrac
2¢; centered irrj, so it can be expanded in multipole ser@sy in this region Hence the
interaction with a particle inside the sphere of radigsriust be necessarily evaluated by
means of @irectsummation. This requirement, which would be very difficult to incorpora
in Greengard’s criterion, has been considered via a little arrangementwéttgeparation
criterion (10); that is, two boxesXand B) arewell-separatedf, and only if, their spheres
(A with radiusa and B with radiusb, respectively) are such that

d>a-+b+maxs-a,2;}, (11)

whered is the distance between the centers of the two spheres.

The smoothing length, used for the boxA is another quantity stored in the tree dat:
structure and it is given by this simple recursive schemaisfterminal, ther z = max {¢},
whereg; is the smoothing length of the partidleontained inA, otherwise: 5 = maxs{eg},
with the maximum taken over all the unempty children boesf A. Anyway in the
following comparison tests, we let= 0 (as for the tree-code), i.e., no softening, becau:
we are not interested in the dynamical evolution of the system.

For a more detailed description of our own implementation of the FMA see Appendi
B and C.

4. CODES PERFORMANCE COMPARISON

4.1. A Suitable Set of Particle Distributions

To compare the CPU-time spent by the two algorithms described in the previous sect
we ran the codes on a DEC Alpha 200-4/233 workstation with three different distributi
of particles (which are always assumed to have the same mass).

(1) Inthe first caseN particles have been distributediformlyat random in a sphere
of unitary radius.

(2) In the second case a setMfparticles has been distributed, with a Monte—Carl
method, in a unitary sphere in such a way to discretize the “clumped” density profile,

£0

PO = o2

12)
with ro = 0.2 (obviouslyp = 0 forr > 1). This is known as the Schuster [15] profile (ol
as the Plummer profile in some texts); it corresponds to a polytropic sphere (of inde
at equilibrium (see [2]) and represents a good approximation to the density distributio
various stellar systems.

3 In principle each particle is allowed to have its own smoothing length. This is useful when one has to simi
gravitational interactions between batbllisionlessandcollisional particles (i.e., fluid elements).
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FIG. 2. Sample ofN = 4827 galaxies in the Northern galactic hemisphere (Leda catalog). The unit on tl
axes corresponds to about 80 Mpc and the origin is on the Earth.

(3) In the third case we distributeld particles according to the density distribution
of a sample oh = 4827 galaxies in the Northern galactic hemisphere (see Fig. 2), tak
from the Leda catalog (see [5]). Other than the ddse n, five more different sets with
N = 2n, 4n, 8n, 20n and 4 particles have been placed at random, but always reprodu
ing the same density distribution traced by the galaxies. We will call these distributic
“cosmological.”

4.2. The Appropriate Choice of Refinement Levels

The tree-code and the FMA in our implementations are laodptive this means that
the number of levels of refinement needed to reach terminal boxésdalguantity. Given
a distribution ofN particles, let be the maximum of the number of subdivisions (taker
over all the space inside the “root” box) that an algorithm based on a tree structure achie
li for the tree-code anktya for the FMA. Obviouslyl depends on the ratio between the
minimum particle-particle distance and the siz¥ the root box containing all the particles.
Moreover it is alway$, > lgva, becauséqmya depends also on the number of particlgs (
the FMA leaves in terminal boxes and, being in gengrall, it performs less subdivisions
in comparison with the tree-code.

To make homogeneous comparisons with codes of other authors, we need to limit
spatial subdivision. In fact the value lo§trongly affects the rapidity of the algorithms. For
instance, we verified that, given the Schuster clumped profile and with a fixed numbe
particles used to discretize it, passing from a distribution sudh as 12 andlgya = 11
(with s = 10) to another one such §s = 8 andlgya = 7, one has a speedup factor of
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about 2. Moreover the memory requirement is also affectelddsgpecially in a recursive
implementation as ours, because at each recursive subroutine call a great amount of
memory is allocated each time for the automatic variables and the number of recursive
depends on the number of levels of refinement. Hence, we verified that it is imposs
with an usual workstation, to refine more than the 11th level Witk 10° particles.

For all these reasons we decided to generate particle positions in such a way to
fixed| for both the codes. This does not mean that the algorithms become non-adar
The number of levels of refinement is stdkcal, but it is limited by appropriate restrictions
on the positions that the particles can assume.

We used the following restriction: each particle must be set at a point of a regular ¢
Such a grid has a stefy2", with L a fixed integer. In this way the maximum “depth”
reached in the space subdivision is limited by the inequklify <l < L.

Thus the uniform and clumped distributions have been generated in such a way to
lie < 8 andlgma <7 (with s> 10 in the FMA). Instead we found that ti = n original
galaxy distribution gavé. =10 and Igma =9. Consequently in generating all the cos
mological distributions withN > n, we kept the same limit for the maximum levels of
refinement in the space subdivision.

Of course during the time evolutions of such systeimends to grow due to the gravi-
tational instability, but in this context we are only interested in giving homogeneous
comparable performance tests in the evaluation of forces only.

4.3. The Results of the Comparison Tests

The order of accuracy chosen was the same for both the tree-code and the FMA
accuracy we mean how close, in modulus, the evaluated forces are to those calct
“exactly” by a direct,particle-particle(PP) method, which is affected only by the numerice
error of the computer (due to the finite number of digits). Consequently we defireddtiee
error of the calculatiore as

PP|

E%ZM & | (13)

whereg; is the modulus of the acceleration of tith particle estimated by each of the twa
algorithms andca” " that computed by the PP method. The error ondiection of the
forces is much lower then the error on the modulus we have defined above, and, a:
usual in theN-body numerical method, it is not considered at all in performance tests be
negligible.

Figure 3 gives the relative error of the tree-code and of the FMA for the various distri
tions. The error is about the same for both the algorithms. An averaged (on all the parti
relative error less than 1% (this is the order of magnitude of the error generally admitte
astrophysical simulations) and almost constant is obtained with the following settings
the various parameters:

e in the FMA we fixeds = 2.5 and varieds in the range 10-50 considering, as we
have said, up to the second order term in the multipole expanpien2);
e in the tree-code we varietlin the range 0.65-0.75.

The CPU-time spent to calculate the accelerations vs the nubéparticles is shown
in Fig. 4. The CPU-time for thparticle-particlemethod is also shown as a reference. Bot
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FIG. 3. Average relative error vs number of particles for both algorithms.

the algorithms are slower to compute forces in the non-uniform models than in the unifc
one, and for the tree-code this is more evident. This is clearly due to the more complice
and non-uniform spatial subdivision in boxes that affects mostly the tree-code due to
fineranddeepesubdivision of the space it uses. Anyway the tree-code is shown to be fas
than the FMA for all the distributions and fdf varying in the range we tested. As expected,
the behaviour of the CPU-time,vs N for the tree-code is well fitted by the logarithmic law

t=aNlogN + 8, (14)

wherex andg are given in Table 1. In our opinion, this logarithmic law must be followec
by the FMA, too, as we will explain in Subsection 4.4.

However, let us observe the CPU-time for the uniform case: it is not easy to distingu
at first sight a logarithmic behaviour from a linear one; furthermore we can presume, as
can observe in Fig. 4, that the FMA must show a more complicated behaviour due to
presence of the parametefthe maximum number of particles left in terminal boxes) anc
to thats was varied.

Blelloch and Narlikar [3] have obtained similar “undulations” in the behaviour of th
CPU-time of their version of the FMA, while the behaviour of the tree-code was mu
“cleaner,” as in our tests.
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FIG. 4. CPU-time (on an Alpha 200-4/233 machine) vs the number of particles for both the algorithms
for the direct particle-particle method.

Coming back to the accuracy, we noted that the CPU-time of both algorithms,
especially that of the FMA, depends strongly on the error. For example, we found,
the cosmologicaN = 8n distribution, that doubling the average error on the evaluation
the forces means reducing the FMA CPU-time to about 40% in comparison with the n
accurate case.

We can see that our FMA becomes faster than the PP methad f081,000 in the
Schuster model, foN > 7,000 in the uniform case and fbf > 12,000 in the cosmological
distributions.

TABLE 1
Values Obtained for the Parametersa and 3, Fitting the Behaviour of the CPU-Time for the
Tree-Code (t.c.) and the FMA with the Lawt = aN logg N + 3

Uniform Clumped Cosmological
Alg. o B Alg. o B Alg. o B
t.c. 10* -0.1 t.c. 3.10* —-0.2 t.c. 3.10* 0.6

FMA 8.10* -2 FMA 103 -2 FMA 103 -4
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To make a comparison with codes of other authors, let us consider the FMA implemer
in 3-D by Schmidt and Lee [14] (although this cadanot adaptivéfollowing the original
Greengard algorithm and, in particular, his well-separation criterion. Their FMAdR-
rizedand it runs on a CRAY Y-MP, but anyway we do not make a direct comparison,
rather compare our “CPU-time ratio” (that is, the ratio between the CPU-time consurn
by the FMA and that consumed by the direct PP method), with the same ratio as obtal
by the codes of Schmidt and Les,the same order of magnitude of the error on the forces

So we can note (see [14]) that fdr = 10* uniformly distributed particles, a truncation
of eighth order p = 8) andfivelevels of refinement, they obtain a CPU-time of 418 s fol
their FMA, against 11 s spent by td&ect PP method, with a relative error on the forces of
about 14 - 1073, Thus they obtain a ratiya /tpp ~ 40, while with our codes we see that
for the uniform distribution wittN = 10* andseverievels of refinement, we have an error
on the forces that is-3 - 1073 (see Fig. 3) with a CPU-time ratipya /tpp ~ 0.8, i.e., our
FMA spends about 80% of the CPU-time spent by the PP method (see Fig. 4). This rati
certainly lower if we use only five levels of refinement, also in the case of an error on 1
forces close to their one.

This seems a very good result.

4.4. Scaling of CPU-Times versus N

Greengard and other authors [4, 9, 13] assert that the FMA would exHiiéza scaling
of the CPU-time va\. We tried to fittppma as a function olN, with various laws, the linear
included. The result is thatlagarithmicbehaviour like that of Eq. (14), gives the best fit,
as for the tree-code.

From Fig. 4 and Table 1 we can see that the tree-code is roughlyr@ed fastethan the
FMA in the “astrophysical” more clumped distributions, while in uniform situations (witt
the order of accuracy we fixed) the FMA goes even slower.

Note, in fact, how the difference of performances reduces slightly passing to mq
clumped distributions; this is because, as we have said, the FMA is less sensitive to
degree of uniformity of the distribution of the particles than the tree-code which uses a fi
subdivision of the space in boxes (as it corresponds=ol).

The higher speed of the tree-code compared to the FMA is easily understood, at |
in 3-D, since while in theory the FMA is more efficient and less “redundant” in managir
information (remember the use of the Taylor expansion of the potential on near bodies
practice this “potential” greater efficiency pays the price of a certain quantity of compu
tional “complications.” This carries the method to a negative total balance in terms of sp
with respect to the competing tree-code.

How can we interpret the CPU-time scaling?

The logarithmic behaviour of the tree-code is explained by a simple estimate of |
number of operations needed by the various steps of the algorithm (see, e.g., [1, 10, :
It is roughly given by the product between the number of partitlelsy the number of
“bodies” (boxes or particles), about lplyl, which contribute to the force on each particle.
Hencet,. ~ Nlogg N.

The logarithmic behaviour of the FMA can be similarly understood when one reconsid
carefully the cost of each step of the algorithm.

It can be estimated (see [9]) that

tema ~ @N + bNeer + CNpe, (15)
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that is, the CPU-time is Anear functionof N, N¢e; (the number of alterminal boxes),
and Ny (the number of all non-empty boxes). Greengard [9] in his final considerations
the scaling of the FMA in the adaptive 2-D version (the 3-D case is similar) estimates
number of these types of boxes (see Lemmas 2.6.4 and 2.6.5 in [9]) to be

Nier ~4-L - (16)

w|lZow|zZ

Npe~5-L-—, a7)
whereL is the totalnumber of subdivisionseeded to reach terminal boxes. Thigs iden-
tified by Greengard witlh. ~ log,(1/A), whereA, a priori fixed, is thespatial resolution
that one wants to reach in the simulation. WAHixed, L would beindependentf N, thus
Nter @and Npe, in Eq. (15), are quantities linear id. Then the FMA CPU-time estimated
by Eq. (15) is linear irN too.

The crucial point is that a constant(andL) only allows manipulation of distributions
of particles withA < rnqin, with rpin the minimum distance between a pair of particles (se
observation 2.5.1 in [9]).

Obviously, in 3-Dfmin ~ N7Y/3, so thatA < rpi, implies

1

Substituting this inequality in the expressions (16) and (17Nqrand N¢er, one obtains
from Eq. (15) thatema 2 N logg N, that is, the same “natural” scaling of the tree-code.

The FMA, to be competitive with the tree-code in astrophysical simulations (with 1
numbers of particles currently used), needs substantial improvements. Some of thes
provements have already been achieved, but only in a molecular dynamics context, v
a higher accuracy is requested (see [7]). To get an indication of the direction where on
to proceed for such an improvement, we made a “profile” of the CPU-time spent by
various parts of the algorithm. This profile is shown in some detail in the Appendix A.

We note that the particuldmplementatiorof the forces evaluation by means of the
various truncated expansions (together with the manipulations operated on them) n
the difference with the tree-code and deserves to be further optimized. In fact, in the
code the same multipolar expansions are used, but in a way much more optimized th
the FMA, because in the tree-code one truncatpsori the expansion at the quadrupole
(p = 2) moment. Moreover one usezal coefficientg§the mass, center of mass, etc.) whicl
satisfy simpler composition and translation rules than the multipolar and Teyhoplexes
coefficients used in the FMA. We think a similar way to proceed has to be introduced ir
“astrophysical” (i.e., with a priori fixeg) Fast Multipole Algorithm, in order to make it
competitive with the tree-code.

5. CONCLUSIONS

Realistic astrophysical simulations require a large amount of computation to eval
gravitational forces. Many codes which give a rapid numerical evaluation of the force f
have been proposed in the literature. In this paper we compare two of these codes: on
BH tree-code) has been largely used in astrophysics for ten years; the other (the Green
FMA [9]) has given promising results in the field of molecular dynamics.
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We have so implemented our own optimizegtial versions of both the tree-code and
adaptive 3-D, FMA.

The results of our comparison tests indicate the tree-code as faster than the FMA
all the interval of total number of particled(< 2 - 1) allowed by the central memory
capacity of a “typical” workstation. This maximum value Wf which could appear low
with respect to modern parallel simulations where it can reaéhi¢ @nyway meaningful
because even in fully parallel codeachprocessor cannot manipulate more than abot
10*~1C particles. The problems in the parallelization of the two codes are comparable,
to their similar structure; thus the higher speed of the tree-code, here verified in a se
context, should be confirmed in the parallel implementation and it seems a valid reaso
concentrate efforts for the most efficient parallelization of the tree-code.

At the end of this paper we have discussed the dependence of the FMA CPU-tishe o
and given an explanation for why its behaviour is similar to that of the tree-code.

APPENDIX A: ANALYSIS OF THE CPU-TIME CONSUMPTION FOR THE FMA

Table 2 shows the CPU-time spent by the various subroutines in our FMA implementati
during a run withN = 1.2-10° particles distributed according to the clumped density profile
The routine BUILD builds the tree structure setting all the pointers and the links amo
parent-children boxes, classifying boxes in terminal and non-terminal, and so on. The rou
EVAL stores in this structure all the data related to each box (the various multipolar &
Taylor coefficients, the radius of the associated sphere, etc.).

The functions ARMR and ARMI give, respectively, the real and the imaginary part of tt
various spherical harmonics needed in the expansions. The functions GARMij give inst
the real and the imaginary parf (= R, |, respectively) of all components £ X, Y, Z)
of the gradient of the spherical harmonics.

The routine FORCEL evaluates the force acting on a given box due to all the res
the system, while FORCE?2 evaluates the force acting on afbdyue to another boB,
considering all the possible cases (both boxes, only one, or none are terminal; they ar
not, well-separated, etc.). All these routines i@&ursive except the functions.

It is evident that most of the CPU-time is spent by FORCE2 (80% of the total). Tht
in this CPU-time profile, this routine has been split into four parts in order to investige
better what part is the most CPU-time expensive. These parts are listed in Table 2 as:

TABLE 2
Percentages of the Total CPU-Time Spent by the Different Routines of the
FMA in the Run with N=1.2. 10° Particles in the Clumped Case

Routine t (%) Routine t (%)
FORCE2.transf 35 GARMYR 2
FORCE2.direct 22 GARMYI 2
FORCE2.mult 18 GARMZR 2
FORCE2.other 5 GARMZ| 2
ARMR 4 BUILD 1
ARMI 2 FORCE1 0.5
GARMXR 2 MAIN 0.4
GARMXI 2 EVAL 0.1

Note The total CPU-time has been 800 s.
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e FORCE2.direct, which performs the direct calculations of the forces on the partic
in A due to those iB (when both boxes are terminal):

e FORCE2.transf which transforms the multipole coefficients pertinent to a we
separated boB into Taylor coefficients of the box,

e FORCE2.mult which evaluates the forces due to the B@n the particles irA by
means of the multipole expansion (wharis terminal); and, finally,

e FORCE2.0other representing the rest of the routine.

Note that the “approximate” calculations (both box-box and box-“terminal box” inte
actions via multipolar expansion) use about the 53% of the total CPU-time, while di
force evaluations (both “terminal box"-“terminal box” interactions) use 22%. Finally, nc
that the phase of tree structure construction and data storage (BUIEWAL) takes only
about 1% of the total CPU-time.

APPENDIX B: MANIPULATION OF MULTIPOLE EXPANSIONS IN THE FMA

Here we briefly describe the three theorems, due to Greengard [9], that permit the n
pulation, in 3-D, of the various series expansions used in the algorithm, and that are u
for the deeper and formal description of our own implementation that follows in the n
Appendix C.

We have said that one can “transform” the multipole expansion (3) ilmttehexpansion
useful to evaluate the field about a given pdmiMore precisely, given the set bjparticles
at P, in the sphereA (associated to the bok, see Fig. 1) which produce the gravitationa
potential® (Q;) over the set of particles in the sphéBgbox B) with centerQq, then one
can show that in the vicinity oQg the approximated potential

P
Wp(Q) =—GY > LXYf@!, ¢ (), (B1)

j=0k=—]

whereQ; — Qo = (r{, 6/, ¢)), differs from the exac® (Q;) of an amount bounded by the
same expression that appears in the r.h.s. of Eq. (9). In this truncagddexpansiorihe
coefficients are given by

Z Z S( Jk,n,m mYJn-]q—nk(ai ) ﬁi)(pi)_j_n_ly (B2)

n=0 m=-n

M being thesameone that appears in the expression (3) &ttla matrix of coefficients
(see Appendix D).

Another theorem allows us to calculaf&" in arecursivemanner. Let us consider the
partitionof the set ok particles in the box, in theq < 8 subsets each ofthem enclosed inth
spheres associated to the children boxesafd with centersine®, « @, gD), ..., (0@,
@, @) LetMMD MM MM@ pe the multipole coefficients calculated for each o
the subsets of particles. If all these spheres are enclosed in the gytisisss automatically
satisfied because of Eq. (8)), the coefficiel\vlll‘jégiven by

i n
Z Z ,(2|inmM}(:rTmYn_m(“(q)’ﬁ(q)) (p(q))” (B3)

n=0 m=-n
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(see the Appendix D for the matr&?) give a potential

Dp(P) = —GZ Z n+1Y"‘(e ¢) (B4)

n=0 m=-n

(whereP = (r, 6, ¢) is a generic poinbutsidethe sphered), whichwell approximateshe
exact potentiatb (P) generated bwll the k particles in the spherd. In fact if P is the
position of a particle in thevell-separatedox B, then one can show that

. SKm PGy km s 1 P
|<I>(P)—<I>(P)|s( a)<F> <W(a+—1> @9

The truncation error has the same upper bound glven by (9).

So we can computd!/lk associated to the boA containing the total set of particles
knowing only those pertinent to trep subsets in each children box. In the tree-code th
same happens, but there the analogous theorem—the “quadrupole composition theore
has been developegecificallyfor the quadrupole moment by Goldstein [8] (those for the
monopole and the dipole are obvious). In the FMA this theorem works for coefficients
any order and it has an upper error bound.

Thus, once théV[" have been calculated for airminalboxes using the definition (4),
by means of (B3) we can compute recursively the coefficientamntboxes ascending the
tree-structure. This coefficients will be transformed, when needed, in the local expans
coefficients (as we will see in more detail in Appendix C) necessary to calculate forces
(B1). In this way, we will be sure that the error made in approximating the “true” potenti
with the various expansions, will always be bounded by Eq. (B5).

The last theorem relates to the translation and composition ¢dthéexpansiorcoeffi-
cients (brieflyTaylor coefficients In this case the rules of composition work, in a certair
sense, inversely. That is, given the coefficieh'fsrelative to the set ok particles in the
sphereA, such that the potentiab,(P) (P = (r, 6, ¢) is a pointinside A given by the
truncated local expansion about the origin

P

Up(P)=-GY > LY. ¢y, (B6)
j=0 k=—]
is such that
GYFmi/ 1 \PH
|‘I’p(P)—¢(P)| < ﬁ(m) s (87)

then at the same point but with another origine A, we have the equality
P
Wp(P) = -G > S LYYrE. ¢ (), (B8)
j=0k=—]j
whereP — Q = (r', 6, ¢') and where the new translated coefficients are
LE =Y STV o (B9)
n=j m=—n

beingO — Q = (p, a, B) (for the matrixS® see Appendix D).
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Thus given theL‘j‘ for a box, we can compute the Taylor coefficients for all the unemp
children boxesising the above formula, with the new origihat the center of each children
boxes. The process has to be recursively iterated until we reach terminal boxes. But
can we obtain the coefficients'} of a box B “the first time” (not knowing those of its
parent box)? Obviously they will be calculated by means of Eq. (B2), transforming
multipole coefficients o$ufficiently distanboxes, that is, of boxes that amell-separated
from B.

APPENDIX C: FORMAL DESCRIPTION OF THE FMA ALGORITHM

Here we describe in deeper detail our version of the FMA algorithm that is sligh
different from the original Greengard algorithm in the adaptive implementation. This
ferences regard mainly the way interactions between distant boxes and the set of patrtic
a terminal box are calculated. Moreover, as we have said, we have modified the Greel
well-separatiorcriterion to take into account the presence sfreoothingof the interaction
that in astrophysical simulations, contrary to molecular dynamics, must be included.

Let us first introduce some useful definitions: in the followiigdicates the maximum
number of particles in theerminal boxesnd the script letters refer to collections of boxe
while simple capitals letters refer to a single box.

e Inaxis the maximum level of refinement reached in the space subdivision;

e | indicates the level of boX, whereas the level of theot box R that is, the box
containing all the particles, is O;
B(l) is the set of all boxes at levebf refinement;
M (A) is theparentbox of box A;
C(A) is the set of alchildren boxe®f box A;
C(S) = Uacs C(A) is the set of all children boxes of each box in theSgt
X (A) indicates the set of boxes, of levglor | o + 1, that areNOT well separated
from box A. The set contains all thierothersof box A, but notA itself;

e 7 isthe set oferminal boxesthat is, such boxes that have no children because th
contain less thas + 1 particles, so they have not been subdivided,;

e np, with A € 7, is the number of particles inside the terminal boRe@bviously
Nna <9);

e dap represents the distance between the geometrical centers of AaesB;

e ¢4 is the length of thgravitational smoothingelative to the boXA;

e 14 is the radius of the sphere that contains all the particles in thefoaxd that is
concentric to it (see text).

The notation “don = a, b” (with b > aintegers) means that all passages included betwe
this statement and the correspondent “end do” are repbateal+ 1 times and every time
the integer variabla takes the valuea,a + 1,...,b — 1, b, like in Fortran; while the
notation “doA € S” means, in this case, that every time the loop is executedoieA
represents one of the various boxes in these$o the statements between “do” and thi
related “end do” are repeated Cé$d times and each time with a different béxe S. For
example, ifS = {Aq, Ap, As, ..., An}, the boxAis A; the first time the loop is executed,
A,, the second time, and so on. However, the order the boxes have in tSehsstno
importance in the algorithm. On the contrary in the first case of “do ... end do,” the orde
the values that takes every time is important. Another notation is the “do wbdaditior?
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meaning that the statements between this “do while ...” and the correspondent “end do”
be executeavhile the logical condition keepsue.

Calculate recursively the multipole coefficients for all the boxes of each level, startir
from the terminal boxes. This procedure is the same as that in the tree-code, but witt
difference that in the FMA the multipole expansion is calculated with the origin in tt
geometrical center of the boxes, so the first order coefficient (the dipole moment) d
not vanish. Another complication is that in the FMA these coefficients are necessa
complex quantities. For terminal boxes use Eg. (4), while for the others use Eq. (B3)

Calculate the radiug of the sphere that contains all the particles in each box. If a bc
is terminalthenr = max {|r; — R|}, wherer; is the position of the particlein the box
andR is its center. If it is not a terminal box the radius is calculated by means of (8).
et Y(R) =0
dol =1, Imax
doC € B()
letxX(C) =0
if | > 1 then translate, if they exist, the coefficients of the local expansion of th
parent boxM (C) about the center of bo® using Eqg. (B9).
if C &7 then [the boxC isn’t terminal]
doB e X(M(C))
if dgc > maxX{2¢g,d -rg} +rpg +rc then
convert the multipole coefficients of boB to Taylor coefficients about the
center of boxC with Eq. (B2), because it isvell separatedrom C and
the sphere where the field generated by the massBssrsmoothed, does
not intersecthe sphere associated@ Sum the Taylor coefficients to the
pre-existent ones.
else
doB; € C(B)
if dg,c > maxX{2¢g,, 8 -rg,} +rp, + rc then
convert the multipole coefficients of boB; to Taylor coefficients of
box C with Eqg. (B2), because it isvell separatedrom C and the
sphere where the field generated by the massBsimsmoothed, does
not intersecthe sphere associated @ Sum the Taylor coeff. to the
pre-existent ones.
else
put B; into the collection¥' (C).
end if
end do
end if
end do
else[the boxC is terminal
let A= X(M(C))
do while A not empty
doBe A
if B € 7 then [the boxB is terminal
eliminate B from the set. A
doi =1,nc
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do ] =1,ng
Sumdirectly (i.e., without any expansion) to the grav. field on th
particlei that due to the particlg taking into account thgrav.
smoothing
end do
end do
else[the boxB isn't terminal]
if dgc > max{2¢g, s - rg} + rg + rc then [the boxC is well-sep.from
the boxB and it is outside its smoothing sphere]
eliminate B from the set.A
Sumto theTaylor coefficientsf the boxC those obtained transforming
themultipole coefficientsf the boxB by means of (B2).
end if
end if
end do
let A = C(A) [Now indicate withA the collection of all the children boxes of
each box in the precedent sét This means that we are descending the tree
the next level]
end do
doi=1,nc
Calculate the local expansion of the grav. field in the position of the partic|
i, using Eg. (B1) and the coefficients pertinent to the Bgxsumming to the
accelerations calculated up to now.
end do
end if
end do
end do

Note that we have simplified the way forces on the particles in terminal boxes are ev
ated. In Greengard’s adaptive algorithm this is made by means of complicated passage
classifications of boxes into many several collections that are computationally expensi
build up.

In our opinion this complication is unnecessary, because when one has to consi
terminal box for which one has the long-range component of the potential in term:s
Taylor coefficients (translated from those of its parent box), one has only to calcu
the short-range forces on theparticles (withn < s) inside the terminal box, due to a
certain set of near boxes and this can be done in the most efficient way by means c
same kind of passages that in ttiee-codeare used to evaluate the force on a singl
particle.

Suppose we have to evaluate forcesngnparticles in the terminal bo. When we
deal with a non-terminal boB and this box imot well-separated front, then it will be
subdivided considering its children boxes and the subdivision is recursively repeated
we reach either terminal or well-separated boxes. The contribution due to terminal boxe:
be calculatedlirectly, that is, summing particle-particle interactions. The contribution dt
to well-separated boxes will be evaluated converting their multipole expansion coeffici
into Taylor ones, summing them to the pre-existent coefficients of th&€temd then, in a
following passage, using these coefficients and the Taylor expansion to evaluate gravita
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forces at the points occupied by the particl€€inThis is done in the last statements of the
above description (from the “do while ...” forward).

APPENDIX D: THE MATRICES OF COEFFICIENTS

Defining A = (=1)[(j — k)!(j + k)!] "2, we have

(1) — k / am—k
j,k,nm = BITnAnmAj/Aj-rn (Dl)
(2) — (~k—m am pk—m / pk
Sj,k,n,m = Cm An Ajfn /Aj (DZ)
(3) — —k pk
Sj,k,n,m = rT—jA,m—kAnmfj Aj/AtT’ (D3)
where
—1)ymin{iml,|k[} fm-k>0
By, = (-1 Y . (D4)
' 1 otherwise
—ymin{ir].sl} ifr.s<0
cs= D . (D5)
1 otherwise
(=nm ifm.-s<0
Dom= (D" ¢ (=™ if m-s> 0 ands| < |m| (D6)
1 otherwise
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